Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: covidwho-1707746

ABSTRACT

The emergence of multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the importance of possible animal-to-human (zoonotic) and human-to-animal (zooanthroponotic) transmission and potential spread within animal species. A range of animal species have been verified for SARS-CoV-2 susceptibility, either in vitro or in vivo. However, the molecular bases of such a broad host spectrum for the SARS-CoV-2 remains elusive. Here, we structurally and genetically analysed the interaction between the spike protein, with a particular focus on receptor binding domains (RBDs), of SARS-CoV-2 and its receptor angiotensin-converting enzyme 2 (ACE2) for all conceivably susceptible groups of animals to gauge the structural bases of the SARS-CoV-2 host spectrum. We describe our findings in the context of existing animal infection-based models to provide a foundation on the possible virus persistence in animals and their implications in the future eradication of COVID-19.


Subject(s)
COVID-19/transmission , Host Specificity , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/epidemiology , Humans , Phylogeny , Receptors, Virus , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Zoonoses/epidemiology
2.
Adv Exp Med Biol ; 1352: 15-31, 2021.
Article in English | MEDLINE | ID: covidwho-1669694

ABSTRACT

INTRODUCTION: Coronaviruses (CoVs) are large, enveloped and positive-sense RNA viruses which are responsible for a range of upper respiratory and digestive tract infections. Interest in coronaviruses has recently escalated due to the identification of a newly emerged coronavirus named severe acute respiratory syndrome 2 (SARS-CoV-2), which is the causative agent of the COVID-19 pandemic. In this chapter, we summarise molecular virological features of coronaviruses and understand their molecular mechanisms of replication in guiding the control of the global COVID-19 pandemic. METHODS: We applied a holistic and comparative approach to assess the current understanding of coronavirus molecular virology and identify research gaps among different human coronaviruses. RESULTS: Coronaviruses can utilise unique strategies that aid in their pathogenicity, replication and survival in multiple hosts. Replication of coronaviruses involves novel mechanisms such as ribosomal frameshifting and the synthesis of both genomic and sub-genomic RNAs. We summarised the key components in coronavirus molecular biology and molecular determinants of pathogenesis. Focusing largely on SARS-CoV-2 due to its current importance, this review explores the virology of recently emerged coronaviruses to gain an in-depth understanding of these infectious diseases. CONCLUSIONS: The presented information provides fundamental bottlenecks to devise future disease control and management strategies to curtail the impact of coronaviruses in human populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics
3.
Microb Pathog ; 150: 104641, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-939160

ABSTRACT

Coronaviruses (CoVs) are causing a number of human and animal diseases because of their zoonotic nature such as Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19). These viruses can infect respiratory, gastrointestinal, hepatic and central nervous systems of human, livestock, birds, bat, mouse, and many wild animals. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging respiratory virus and is causing CoVID-19 with high morbidity and considerable mortality. All CoVs belong to the order Nidovirales, family Coronaviridae, are enveloped positive-sense RNA viruses, characterised by club-like spikes on their surfaces and large RNA genome with a distinctive replication strategy. Coronavirus have the largest RNA genomes (~26-32 kilobases) and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. Non-structural proteins (nsp) 7-16 are cleaved from two large replicase polyproteins and guide the replication and processing of coronavirus RNA. Coronavirus replicase has more or less universal activities, such as RNA polymerase (nsp 12) and helicase (nsp 13), as well as a variety of unusual or even special mRNA capping (nsp 14, nsp 16) and fidelity regulation (nsp 14) domains. Besides that, several smaller subunits (nsp 7- nsp 10) serve as essential cofactors for these enzymes and contribute to the emerging "nsp interactome." In spite of the significant progress in studying coronaviruses structural and functional properties, there is an urgent need to understand the coronaviruses evolutionary success that will be helpful to develop enhanced control strategies. Therefore, it is crucial to understand the structure, function, and interactions of coronaviruses RNA synthesizing machinery and their replication strategies.


Subject(s)
Coronavirus/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Animals , COVID-19/virology , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/metabolism , Genome, Viral , Humans , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication
4.
Viruses ; 12(9)2020 09 01.
Article in English | MEDLINE | ID: covidwho-742847

ABSTRACT

Until vaccines and effective therapeutics become available, the practical solution to transit safely out of the current coronavirus disease 19 (CoVID-19) lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of results, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected NHS patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. Therefore, this system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


Subject(s)
Artificial Intelligence , Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/virology , Animals , COVID-19 , COVID-19 Testing , Chlorocebus aethiops , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Dogs , Humans , Madin Darby Canine Kidney Cells , Pandemics , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL